Skip to main content

What Is AC Generator and Its Working Principle

What is a Generator?

A generator is a machine that converts available mechanical energy into electrical energy. It works on the principle of Faraday’s Law of Electromagnetic Induction. Based on the output obtained, we classify generators as:

 

AC Generators or Alternators

AC generator, also known as alternators, is a machine that converts mechanical energy into electrical energy. The generated electrical energy is in the form of an alternating current sinusoidal output waveform. The mechanical energy is usually supplied by steam turbines, gas turbines and combustion engines.

 


AC generators work on the principle of Faraday’s law of electromagnetic induction which states that electromotive force -EMF or voltage – is generated in a current carrying conductor that cuts a uniform magnetic field. This can either be achieved by rotating a conducting coil in a static magnetic field, or by rotating the magnetic field that contains the stationary conductor. The preferred arrangement is to keep the coil stationary because it is easier to draw induced alternating current from a stationary armature coil than a rotating coil.

 

The various components of an AC generator are:

 

Field

Armature

Prime Mover

Rotor

Stator

Slip Rings

Here, we have stated the purpose of each component:

 

Field

The field consists of coils of conductors that receive a voltage from the source and produce magnetic flux. The magnetic flux in the field cuts the armature to produce magnetic flux. This voltage is the output voltage of the AC generator.

 

Armature

The part of an AC generator in which the voltage is produced is known as an armature. This component primarily consists of coils of wire that are large enough to carry the full-load current of the generator.

 

Prime Mover

The component used to drive the AC generator is known as a prime mover. The prime mover could either be a diesel engine, a steam turbine, or a motor.

 

Rotor

The rotating component of the generator is known as a rotor. The generator’s prime mover drives the rotor. Based on the type of generator, this component may either be the armature or the field. The rotor will be the armature if the voltage output is generated there; the rotor will be the field if the field excitation is applied there.

 

Stator

The stator of an AC generator is the stationary part. As the rotor, this component may be the armature or the field, depending on the type of generator. The stator will be the armature if the voltage output is generated there; the stator will be the field if the field excitation is applied there.

 

Slip Rings

Slip rings are electrical connections that are used to transfer power to and fro from the rotor of an AC generator. They are typically designed to conduct the flow of current from a stationary device to a rotating one.

Comments

Popular posts from this blog

What Is the Difference Between Electric Motor and Electric Generator

An electric motor is an electrical machine that converts electrical energy into mechanical energy. Most electric motors operate through the interaction between the motor's magnetic field and winding currents to generate force. In certain applications, such as in regenerative braking with traction motors, electric motors can be used in reverse as generators to recover energy that might otherwise be lost as heat and friction. An electric generator operates in the reverse direction, converting mechanical energy into electrical energy. Electric generator can be divided into various type, open type, silent type, trailer type, portable type and container type, etc. Electric generator is mainly composed of diesel engine & alternator. Electric generator set is mainly composed of engine, alternator, control module, and common base. Electric generator :- Electric generator is a type of machine which converts mechanical input (energy) into electrical output (...

Engine Fault Code Messages - Volvo Penta Engine

Volvo Penta Engine Fault Code When a malfunction has occurred and the diagnostic system has generated one or more fault codes, these are read out differently depending on the equipment used. Please refer to “Fault code messages”. If the system indicates that a fault code has been set: 1 Cut engine speed to idle, or shut the Volvo engine off. 2 For DCU/DU Read the fault code from the display, please refer to Reading fault codes via the DCU or Reading fault codes via the DU. For CIU press the diagnostic button and read the fault code, by observing the flashing of the diagnostic lamp. Refer to Reading fault codes via the diagnostic lamp, CIU. 3 Look up the fault code in the Fault Code Register chapter and take the recommended measures. Reading fault codes via the DU (Display Unit) Depending on the severity of the fault the text, either WARNING! or ALARM STOP (a buzzer sounds) will be shown on the display 1 Press any button to come to the fault list. The f...

Perkins Powerful 4000 Series Engine at Middle East Electricity

The Perkins team returns to Middle East Electricity (MEE) in 2017 to promote the full range of its diesel and gas electric power engines. Taking pride of place is the 4000 Series platform, which is designed to provide prime or standby power in critical applications. The evolution of the Perkins 4000 Series The steady evolution of the powerful 4000 Series has taken place over a number of years, thanks to significant investment from Perkins. Its development means the engine is used for prime and standby applications by original equipment manufacturers (OEMs) and end-users. The 4000 Series is tough and durable, provides consistent performance in the harshest conditions, and is proving to be a constant, reliable electric power source for prime applications all over the world. Perkins sells hundreds of 4000 Series engines every year into the prime power market. It has built more than 50,000 4000 Series engines for some of the world’s biggest businesses, and up to 30 pe...